Lateral resolution in elastography.
نویسندگان
چکیده
The factors that control the lateral resolution in elastography were investigated using a simulation study. The lateral resolution was estimated from the simulated axial strain elastograms as the smallest measurable distance between two equally stiff lesions embedded in a homogeneously softer background. The lesions were symmetrically positioned lateral to the center of the target, at the focus of the transducer. Ultrasound (US) systems with different transducer frequencies, bandwidths and f-numbers were simulated. The effects of the ultrasonic parameters, the lateral spacing between adjacent echo signals, the cross-correlation window length, the lesion/background elastic contrast and the lateral motion of scatterers on the estimated lateral resolution were investigated. The results show that the lateral resolution in elastography is proportional to the beam width of the US system used to acquire the data, and is on the same order as the sonographic lateral resolution.
منابع مشابه
An H∞ Strategy for Strain Estimation in Ultrasound Elastography Using Biomechanical Modeling Constraint
The purpose of ultrasound elastography is to identify lesions by reconstructing the hardness characteristics of tissue reconstructed from ultrasound data. Conventional quasi-static ultrasound elastography is easily applied to obtain axial strain components along the compression direction, with the results inverted to represent the distribution of tissue hardness under the assumption of constant...
متن کاملAn experimental characterization of elastographic spatial resolution: analysis of the trade-offs between spatial resolution and contrast-to-noise ratio.
An experimental study of the spatial resolution in elastography was conducted. Models that involved two cylindrical inclusions arranged as a wedge were used to characterize the axial and lateral resolution of the axial strain elastograms. A study of the dependence of the spatial resolution on several factors such as the algorithmic parameters, the applied strain and the modulus contrast was per...
متن کاملThree-Dimensional Motion Estimation in Elastography
In elastography we are capable of estimating the two in-plane principal strain components following an applied compression, namely the axial and lateral components, along and perpendicular the compressor/transducer axis, re pectively. However, the motion resulting from the compression is threedimensional. Therefore, in order to fully describe the resulting three-dimensional motion we need to al...
متن کاملAward Number : W 81 XWH - 09 - 1 - 0060 TITLE : Ultrasound - Based Guidance for Partial Breast Irradiation Therapy
This paper introduces two real-time elastography techniques based on analytic minimization (AM) of regularized cost functions. The first method (1D AM) produces axial strain and integer lateral displacement, while the second method (2D AM) produces both axial and lateral strains. The cost functions incorporate similarity of RF data intensity and displacement continuity, making both AM methods r...
متن کاملAssessing image quality in effective Poisson's ratio elastography and poroelastography: I.
The quality of strain estimates in elastography is typically quantified by several quality factors such as the elastographic signal-to-noise ratio, the elastographic contrast-to-noise ratio and the spatial axial and lateral resolutions. While theoretical and simulation works have led to established upper bounds of these image quality factors in axial strain elastography, the performance limitat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ultrasound in medicine & biology
دوره 29 5 شماره
صفحات -
تاریخ انتشار 2003